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Using the Binomial Transformer to Approximate
the Distribution for Maximally Flat
Quarter-Wavelength-Coupled Filters

J. Michael Drozd and William T. Joines

Abstract—With the binomial transformer as a basis, a closed-form
expression is derived for theQ distribution used to design maximally
flat quarter-wavelength-coupled transmission-line filters. The derived
expression is shown to be valid for filters with small values of total
Q. Also, an existingQ-distribution expression derived from the lumped-
element prototype (LEP) circuit is discussed, and is shown to be valid for
filters with large values of total Q. By combining the derived binomial
transformer Q distribution and the LEP Q-distribution expressions, a
piecewise closed-formQ-distribution expression is developed, which is
applicable over a wide range of totalQ values.

Index Terms—Bandpass filters, binomial transformer, Butterworth fil-
ters, maximally flat magnitude filters, quarter-wavelength-coupled filters,
Q distribution.

I. INTRODUCTION

To accurately design a maximally flat quarter-wavelength-coupled
transmission-line filter using arbitrary resonant elements, one needs
to know the distribution ofQ values for the resonant sections of
the filter [1]. Matching thisQ distribution to theQ of the resonator
sections, a maximally flat response is created. For a given number
of resonant sections and totalQ, there is a unique distribution of
Q values for the individual resonators. Unfortunately, a closed-form
solution for theQ distribution, which is valid for all values of total
Q, does not exist.

This paper develops a closed-form expression for theQ distri-
bution. This expression is derived from the binomial transformer,
a closed-form equation that has been used for designing maximally
flat quarter-wave transformer impedance-matching networks (IMN’s)
[2]–[5]. Specifically, the binomial transformer equation solves for
the impedance of each section given the number of sections and the
load-to-source mismatch. By substituting the binomial transformer
equation into an expression for theQ of each quarter-wave trans-
former section, a closed-form expression for theQ distribution is
created. This expression depends on the load-to-source mismatch.
However, to be useful to a designer, theQ distribution needs to be
expressed in terms of the totalQ of the filter. Therefore, a relation is
derived between the load-to-source mismatch of an IMN and the total
Q and, from this relation, the resulting closed-formQ-distribution
expression depends only on the totalQ of the filter.

It is shown that the derived closed-form expression is only valid
for low total Q filters. This is because the binomial transformer
equation is only valid for small load-to-source mismatches, which
implies that it is only valid for small values of totalQ. Currently,
there exists another approximate closed-form expression for theQ
distribution, which is based on the lumped-element prototype (LEP)
filter. It is also shown that the LEPQ-distribution expression is only
valid for high totalQ filters. By combining the LEP and binomial
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transformerQ-distribution expressions in a piecewise fashion, an
overall Q-distribution expression is offered, which is accurate for
most practical values of totalQ.

II. DERIVING THE Q DISTRIBUTION

FROM THE BINOMIAL TRANSFORMER

In this section, a closed-form expression of theQ distribution is
derived by substituting the binomial transformer impedance value into
the equation for theQ of a quarter-wavelength transformer. First,
the binomial transformer and theQ of a quarter-wave transformer
section are discussed. Then, the binomial transformer impedance
is substituted into the expression for theQ of each quarter-wave
transformer section. This yields a closed-form expression of theQ
distribution as a function of the load/source mismatch. Finally, the
load-to-source mismatch is related to the totalQ, which yields an
equation for theQ distribution in terms of the totalQ of the filter.

A. The Binomial Transformer

The binomial transformer equation gives approximate characteristic
impedance values for each section of ann-section maximally flat
quarter-wave transformer IMN. The binomial transformer equation
is [2]–[5]

Z0i = Z0
ZL
Z0

(M =2 )

; i = 1; 2; � � � ; n (1)

whereZL is the load impedance,Z0 is the source impedance, andn is
the number of sections.Mi is related to coefficients of the binomial
expansion by

Mi =

i

k=1

Ck (2)

whereCk is the binomial coefficient given by

Ck =
n!

(n� k + 1)!(k� 1)!
; k = 1; 2; � � � ; n: (3)

For simplicity, (1) can be normalized toZ0, giving

z0i = Z0i=Z0 = RM =2 ; i = 1; 2; � � � ; n (4)

whereR = ZL=Z0 is the load-to-source mismatch.
As an example, for a two-section(n = 2) IMN, M1 = 1 and

M2 = 1 + 2 = 3 using (2) and (3). From (4), the normalized
characteristic impedances arez01 = R1=4 and z02 = R3=4. This
is in agreement with the same example given in [5].

The binomial transformer equation (4) is derived by considering
the reflections that occur to a wave traveling through the IMN at
each junction between quarter-wave transformer sections. At each
junction, part of the wave is transmitted, and the other part is reflected.
When the reflected wave reaches the previous junction, a part is
again reflected and a part is transmitted, and so on. Summing all
of the reflections/transmissions at each junction gives an accurate
mathematical description of the wave throughout the IMN. With
this description, the maximally flat form can be found by setting
the derivatives of the function, evaluated at the center frequency,
to zero. Although the mathematical description is quite complex,
by considering only the first-order reflections, the expression is
significantly simplified. This simplified expression is the binomial
transformer equation.
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Fig. 1. A quarter-wavelength transformer IMN.

By assuming that multiple reflections do not occur, this implicitly
assumes that the reflected wave is small in comparison to the
transmitted wave. This occurs only when the difference between
successive quarter-wave transformer impedances is small. Small
impedance steps can occur only if the load/source mismatchR is
small or, if R is large, there are many quarter-wave transformer
sections, i.e.,n is large. Thus, the binomial transformer approximation
loses accuracy for largeR and smalln. We will show in Section II-E
that asR gets large orn gets small, the totalQ, QT of the IMN
gets large. As a result, because largeR and smalln IMN’s are high
QT IMN’s, the binomial transformer expression is only valid for low
QT IMN’s.

B. TheQ for a Quarter-Wavelength Transformer

Fig. 1 shows a quarter-wavelength transformer IMN. Each section
has a characteristic impedanceZ0i, a real source resistanceZSi, and
a real load resistance equal toZLi.

The Q for a single quarter-wavelength transformer is found by
using [6], [4]

Q =
!

2Rs

@Xs

@! !=!

(5)

whereRs is the total resistance andXs is the total reactance in
series. Substituting the expressions forRs and Xs into (5) gives
an expression for the loadedQ of a quarter-wavelength section of
transmission line terminated inZLi as [6]

Qi =
�

8

Z0i

ZLi
�

ZLi

Z0i
(6)

or, equivalently, as

Qi =
�

8

ZSi

Z0i
�

Z0i

ZSi
(7)

by using the familiar quarter-wavelength transformer condition

ZSi =
Z2
0i

ZLi
: (8)

C. Q Distribution as a Function ofR

1) Substituting Binomial Transformer Impedance into
Qi: Combining (4) and (6) yields an equation forQ for a
single quarter-wave section as a function of the overall load/source
mismatchR as follows:

Qi =
�

8

RM =2 )

ZSi
�

ZSi

RM =2 )
; i = 1; � � � ; n (9)

whereZSi is the junction impedance, i.e., the impedance looking
toward the source. This junction impedanceZSi can be specified in
terms of the previous quarter-wave-section characteristic impedances

by using (8) (withZS1 = Z0) as follows:

ZS2 =
Z2
01

ZS1
=
Z2
01

Z0

ZS3 =
Z2
02

ZS2
=
Z2
02Z0

Z2
01

ZS4 =
Z2
03

ZS3
=
Z2
03Z

2
01

Z2
02Z0

� � � : (10)

Generalizing, fori even,

ZSi =
Z2
0(i�1)Z

2
0(i�3) � � �Z

2
01

Z2
0(i�2)Z

2
0(i�4) � � �Z

2
02Z0

(11)

and i odd,

ZSi =
Z2
0(i�1)Z

2
0(i�3) � � �Z

2
02Z0

Z2
0(i�2)Z

2
0(i�4) � � �Z

2
01

: (12)

2) Qi for i Even: By substituting (1) into (11),ZSi is expressed
in terms ofR as

ZSi =
R2M =2 R2M =2

� � �R2M =2

R2M =2 R2M =2
� � �R2M =2

: (13)

Substituting (13) into (9) yields the following expression:

Qi =
�

8

RM =2

R2M =2 R2M =2
� � �R2M =2

R2M =2 R2M =2
� � �R2M =2

�

R2M =2 R2M =2
� � �R2M =2

R2M =2 R2M =2
� � �R2M =2

RM =2
(14)

which may also be written as

Qi =
�

8
R
1=2n(M �2M +2M ����+2M �2M )

�R
�1=2n(M �2M +2M ����+2M �2M )

: (15)

Finally, substituting (2) into (15) yields

Qi =
�

8
R
1=2n(C �C +C �����C +C �C )

�R
�1=2n(C �C +C �����C +C �C )

: (16)

3) Qi for i Odd: Similarly, for i odd, by substituting (1) into (12),
ZSi is expressed in terms ofR as

ZSi =
R2M =2 R2M =2

� � �R2M =2

R2M =2 R2M =2
� � �R2M =2

: (17)

Substituting (17) into (9) and simplifying using (2) yields

Qi =
�

8
R
1=2n(C �C +C �����C +C �C )

�R
�1=2n(C �C +C ����+C �C +C )

: (18)

D. General Expression forQ Distribution as a Function ofR

Noting thatQi in (16) with i even andQi in (18) with i odd are
identical in form, the general expression for theQ distribution as a
function of R is

Qi =
�

8
R
N =2n

�R
�N =2n

; i = 1; � � � ; n (19)

where

Ni =

i

k=1

(�1)i�kCk: (20)
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Fig. 2. R versusQT using different numbers of sections(n).

Fig. 3. log
10R versusQT using different numbers of sections(n).

The values forNi can also be obtained from the following modified
version of Pascal’s triangle:

n = 1 1
n = 2 �1 1
n = 3 1 �2 1
n = 4 �1 3 �3 1
n = 5 1 �4 6 �4 1:

(21)

E. R Versus TotalQ

TheQ distribution given by (9) is specified in terms ofR, but the
Q distribution for a given filter is typically specified as a function
of QT . Thus, it is necessary to relateR to QT . While a closed-form
relation betweenQT andR has not been found, Fig. 2 provides a
graphical relation betweenR versusQT for several values ofn.
Fig. 2 shows that asR increases,QT increases, for a given number
of sectionsn. Notice also, using more sections results in a lowerQT

for a givenR.
An approximate relationship betweenR and QT is developed

by noting that the graph oflog10 R versusQT , shown in Fig. 3,
is basically linear for low values ofQT . Using this linearity, the
following functional form is obtained:

10 log10R = (4n+ 5)QT � 3n+ 1 (22)

which may also be written as

R = [10](1=10)((4n+5)Q �3n+1)
: (23)

F. Binomial TransformerQ-Distribution Approximation

Substituting (23) (the approximate relationship betweenR and
QT ) into (19) (the binomial transformerQ distribution) yields an
expression for theQ distribution as a function ofQT and n as
follows:

Qi =
�

8
10(1=10)(N =2 )((4n+5)Q �3n+1)

�10(�1=10)(N =2 )((4n+5)Q �3n+1)
; i = 1; � � � ; n:

(24)

As an example, theQ distribution for a four-section filter with
QT = 0:8 is calculated as follows. Using Fig. 2,QT = 0:8
corresponds toR = 3:751. Using the closed-form approximation
(23), QT = 0:8 corresponds toR = 3:802. With this information,
the binomial transformerQ distribution is found from (9) or (24).
The resultingQ distributions and the actualQ distribution are
given in Table I. Note that the values ofQi obtained using the
binomial transformer expression are fairly close to the actualQ

distribution. Also notice that theQ distribution created using the
binomial transformer is symmetrical, i.e.,Q1 = Q4 andQ2 = Q3.
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Fig. 4. Comparison of results for a four-section filter withQT = 1:0.

TABLE I
BINOMIAL TRANSFORMERQ DISTRIBUTION

FOR A FOUR-SECTION FILTER, QT = 0:8

TABLE II
BINOMIAL TRANSFORMER VERSUS ACTUAL Q

DISTRIBUTION FOR A THREE-SECTION FILTER

III. A PIECEWISE EXPRESSION FOR THEQ DISTRIBUTION

The binomial transformerQ distribution is only accurate for small
load/source mismatchR (low QT ), and/or a large number of sections
n. AnotherQ-distribution approximation that currently exists is based
on the LEP circuit and is valid for highQT filters. Using a piecewise
combination of both the LEP and binomial transformerQ-distribution
expressions, an overall closed-form relationship can be developed,
which is fairly accurate over a wide range ofQT values.

A. Valid Range of the Binomial TransformerQ Distribution

Tables II and III, compare the results for the binomial transformer
Q distribution against the actualQ distribution forn = 3 andn = 6.
Notice that forn = 3 and n = 6, the binomial transformerQ

TABLE III
BINOMIAL TRANSFORMER VERSUS ACTUAL

Q DISTRIBUTION FOR A SIX-SECTION FILTER

distributions are more accurate for low values ofQT than for high
values ofQT . Also, for a given value ofQT , the binomial transformer
Q distribution for a filter with fewer sections is more accurate. In fact,
the binomial transformerQ distributions forn = 2 are identical to
the actualQ distributions for all values ofQT .

B. LEPQ Distribution

The LEPQ-distribution expression begins with the element values
(gk = Lk or Ck) for a maximally flat response [7]

gk = 2 sin
(2k � 1)�

2n
; k = 1; 2; � � � ; n: (25)

Using this expression, theQ distribution of each individual res-
onatork is given by [4]

Qk = QT sin
(2k� 1)�

2n
; k = 1; 2; � � � ; n: (26)

Unfortunately, (26) does not result in a maximally flat response
and does not give the correct totalQ [1]. The reason is that the
quarter-wavelength sections of transmission line contribute to the
filter response. For high totalQ filters, this effect is not as noticeable,
but for low totalQ filters, this error causes ripples in the passband.
In addition, the transmission-line selectivity adds to theQ of the
filter. Thus, using (26) results in an inaccurateQT . It approaches the
correct value only at high values ofQT .

C. Low and High TotalQ Example Comparison

To compare the valid range of the LEPQ distribution to the
binomial transformerQ distribution, a low totalQ example,QT =
1:0, and a high totalQ example,QT = 5:0, are created. Both
examples are for a four-section quarter-wavelength-coupled filter
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Fig. 5. Comparison of results for a four-section filter withQT = 5:0.

TABLE IV
BINOMIAL TRANSFORMER VERSUS LEP Q DISTRIBUTION

FOR A FOUR-SECTION FILTER WITH QT = 1:0

TABLE V
BINOMIAL TRANSFORMER VERSUS LEP Q DISTRIBUTION

FOR A FOUR-SECTION FILTER WITH QT = 5:0

that uses quarter-wavelength shorted-stub resonators, which haveQ

values given by

Qi =
�

8

Z0

Zqi
(27)

whereZqi is the impedance of theith quarter-wavelength shorted
stub andZ0 = 50 
. In addition, both example filters are designed
to resonate atf0 = 1 GHz.

For the low totalQ example,QT = 1:0, Fig. 4 showsS11
from modeled results for the exactQ distribution (using theQ-
distribution method), with the LEP expression (26) and with the
binomial transformer expression (9). Table IV provides a summary
of the results.Q3 dB is calculated using the 3-dB bandwidth

Q3 dB =
f0

f2 � f1
(28)

wheref2 andf1 are upper and lower 3-dB frequencies, respectively.
Notice that the LEPQ distribution yields large ripples in the
passband, and does not accurately give the desired value forQT .
On the other hand, the binomial transformerQ distribution is very
accurate.

For the high totalQ example,QT = 5:0, Fig. 5 showsS11
from modeled results using the actualQ values (theQ-distribution

method), with the LEP expression for theQ distribution, and with
the binomial transformer expressionQ values. Table V summarizes
the results. Notice that the LEP expression still creates ripples in the
passband, but fairly accurately gives the correct value forQT . On
the other hand, using the binomial transformerQ distribution gives
inaccurate results, but does not have ripples in the passband.

D. Closed-Form Approximation for theQ Distribution

Since the binomial transformerQ distribution is fairly accurate for
low QT filters, and the LEPQ distribution is fairly accurate for high
QT filters, the following piecewise closed-form expression for theQ

distribution is offered:

Qi =
�

8
10(1=10)(N =2 )((4n+5)Q �3n+1)

� 10(�1=10)(N =2 )((4n+5)Q �3n+1)
; QT � 3:0

Qi =QT sin
(2i� 1)�

2n
; QT > 3:0 i = 1; 2; � � � ; n:

(29)

The value ofQT = 3:0 was arbitrarily chosen as the cutoff. It
may be more useful to define this cutoff as a function of the number
of sectionsn.

IV. CONCLUSION

This paper has presented a derivation of a closed-form expression
for the Q distribution based on the binomial transformer equation,
which is often used to design maximally flat IMN’s. It has been
shown that this expression is accurate for low totalQ filters. Since the
current closed-form expression based on the LEP circuit is accurate
for high totalQ filters, a piecewise closed-form expression for the
Q distribution was also offered, which is applicable to filters for all
values of totalQ.
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Circuit Theory for Spatially Distributed
Microwave Circuits

Ahmed I. Khalil and Michael B. Steer

Abstract—A spatially distributed radio-frequency (RF) circuit, mi-
crowave, or millimeter-wave circuit does not have a global reference
node as required in conventional nodal analysis. Instead, local reference
nodes associated with ports are required. This paper adapts modified
nodal analysis to accommodate spatially distributed circuits, allowing
conventional harmonic balance and transient simulators to be used.

Index Terms—Circuit simulation, computer-aided design, microwave
circuits.

I. INTRODUCTION

Nodal analysis is the mainstay of circuit simulation. The basis of
the technique is relating nodal voltages (voltages at nodes referenced
to a single common reference node) to the currents entering the nodes
of a circuit. Generally, the art of modeling is then to develop a
current/nodal-voltage approximation of the physical characteristics
of a device or structure. With spatially distributed structures, a
reasonable approximation can sometimes be difficult to achieve.
The essence of the problem is that a global reference node cannot
reasonably be defined for two spatially separated nodes when the
electromagnetic field is transient or alternating. In this situation, the
electric field is nonconservative and the voltage between any two
points is dependent on the path of integration and, hence, voltage is
undefined. This includes the situation of two separated points on an
ideal conductor. In a time-domain context, it takes a finite time for the
state at one of the points on the ideal conductor to affect the state at
the other point. In the case of waveforms on digital interconnects, this
phenomenon has become known as retardation [1]. With high-speed
digital circuits, it is common to model ground planes by inductor
networks so that interconnects are modeled by extensive meshes of
resistors, inductors, and capacitors. Consequently, no two separated
points are instantaneously coupled. In transient analysis of distributed
microwave structures, lumped-circuit elements can be embedded in
the mesh of a time discretized electromagnetic-field solver such as
a finite-difference time-domain (FDTD) field modeler [2], [3]. The
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Fig. 1. Nodal circuits. (a) General nodal circuit definition. (b) Conventional
global reference node. (c) Local reference node proposed here.

temporal separation of spatially distributed points is then inherent to
the discretization of the mesh.

With a frequency-domain electromagnetic-field simulator, ports are
defined and, thus, a port-based representation of the linear distributed
circuit is produced. With ports, a global reference node is not
required. Instead, a local reference node (one of the terminals of
the two-terminal port) is implied. The beginnings of a circuit theory
incorporating ports in circuit simulation has been described and
termed the compression matrix approach [4], [5]. This milestone work
presented a technology for integrating port-based electromagnetic-
field models with nonlinear devices. Circuit simulation using port
representation has been reported in [6]. This requires the repre-
sentation of nodally defined circuits in its port equivalent by a
general-purpose linear multiport routine. Hence, the advantage of
accessing information at all nodes, as in nodal analysis, is lost.

The purpose of this paper is to extend the circuit theory behind the
compression matrix approach to general-purpose circuit simulators
based on nodal analysis. In particular, we present the concept of local
reference nodes that enables port-based network characterization to be
used with nodally defined circuits in the development, by inspection
(the preferred approach), of what is termed a locally referenced nodal
admittance matrix. A procedure for handling and moving the local
reference nodes is described, along with circuit-reduction techniques
that facilitate efficient simulation of nonlinear microwave circuits.

II. NODAL-BASED CIRCUIT SIMULATION

The most popular method for circuit analysis in the frequency do-
main is the nodal admittance matrix method. In the nodal formulation
of the network equations, a matrix equation is developed that relates
the unknown node voltages to the external currents using the model
shown in Fig. 1. All node voltages are then defined with respect to an
arbitrarily chosen node called the global reference node. Eliminating
the row and column associated with the global reference node leads
to a definite admittance matrix, and then the solution for the node
voltages is straightforward. In this type of analysis, only one reference
node can exist.
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